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Abstract— To mitigate the congestion caused by parking,
performance based pricing schemes have received a significant
amount of attention. However, several recent studies suggest
location, time of day, and awareness of policies are the primary
factors that drive parking decisions. In light of this, we provide
an extensive study of the spatio-temporal characteristics of
parking demand. This work advances the understanding of
where and when to set pricing policies, as well as how to target
information and incentives to drivers looking to park. Harness-
ing data provided by the Seattle Department of Transportation,
we develop a Gaussian mixture model based technique to
identify zones with similar spatial demand as quantified by
spatial autocorrelation. In support of this technique we provide
a method based on the repeatability of our Gaussian mixture
model to show demand for parking is consistent through time.

I. INTRODUCTION

Developing effective parking policy is challenging con-

sidering the diverse needs of a city which must be balanced.

Perhaps the most significant consequence of failing to do so

adequately is increased congestion on arterials. Indeed, it has

been estimated that approximately 30% of traffic in a city is

due to vehicles in search of parking [1], [2]. The economic

and environmental impacts of this phenomenon have been

shown to be significant [3]–[5].

While performance based pricing strategies aimed at com-

bating adverse impacts of parking are widely researched

[6]–[9] and explored by cities [10]–[13], there is growing

evidence that several factors beyond price drive parking de-

cisions. The results of surveys conducted in Los Angeles and

Beijing on drivers looking to park revealed that proximity to

an intended destination influenced decisions more than price

[14], [15]. Correspondingly, the results of empirical studies

on the price elasticity of parking demand support considering

control methods beyond price. One of the most expansive

studies examined the SFpark Project [10] and found that

price elasticities varied significantly with location and time of

day, indicating price was not the only factor in decisions [7].

The complexity of many proposed pricing schemes is

also problematic. For instance, it took two price adjustments

and increased marketing before drivers were aware enough

of policies to change their behavior in the SFPark Project
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[7]. Likewise, the aforementioned survey in Los Angeles

confirmed drivers awareness to price is low [14].

Despite new data sources that could potentially support

nuanced management strategies, cities generally employ

simple static pricing schemes, predominantly owing to the

obstacles to carrying out substantial policy changes. While

maintaining salient features of the existing policies which

make them viable, e.g., being easy to track and understand,

the approach to selecting where and when to set them can

be greatly improved by exploiting available data streams.

Thus in contrast to prior research, we analyze frequently

overlooked factors in parking decisions such as location and

time of day, to propose methods that can improve traditional

policies with straightforward modifications.

Leveraging publicly available data sources, we develop

approaches to identify zones and time periods with similar

spatial and temporal parking demand respectively—allowing

for more effective simple static pricing schemes. Specifically,

we show that a Gaussian mixture model (GMM) can be

used to identify groups of block-faces which have a high

degree of spatial autocorrelation. We supplement the model

by providing a method based on the repeatability of the

GMM to metricize the consistency of parking demand, and

demonstrate through experiments that demand is indeed

consistent through time.

In Section II we introduce our data sources, describe our

method to estimate demand, and discuss the spatio-temporal

characteristics of parking demand. We describe our approach

using a GMM to identify zones with similar spatial demand

and how we quantify this using spatial autocorrelation in

Sections III and IV, respectively. In Section V, we present

the results of our analysis using parking data from Seattle,

WA and conclude with a discussion in Section VI.

II. SPATIO-TEMPORAL CHARACTERISTICS OF DEMAND

A. Data Sources

We use paid parking transaction data, block-face supply

data, and GPS location data of the block-faces from January

1st, 2017–July 30th, 2017 made available to us via the Seat-

tle Department of Transportation (SDOT)1. The paid park-

ing transaction data includes both pay-station and pay-by-

phone records for each block-face. Paid parking is available

Monday–Saturday. The block-face supply data consists of

the estimated number of parking spaces for each block-face2.

1These data sources are available via the open data portal at
data.seattle.gov.

2In Seattle, parking spaces are not marked and thus the number of spaces
for each block-face is estimated by dividing the length of the legal parking
zone into 25 foot increments.







Algorithm 1 EM Algorithm for GMM

1: procedure EM(x) ⊲ x: normalized feature matrix
2: for each initialization do
3: while ∆LL > ǫ do
4: for each sample xi do
5: E-Step:
6: for j in {1, . . . , k} do
7:

ri,j =
πjN (xi|µj ,Σj)∑k

j
′ πj

′N (xi|µj′ ,Σj′)

8: end for
9: end for

10: for each component πj , µj ,Σj do
11: M-Step:
12:

πj =
1

n

n∑

i=1

ri,j

13:

µj =

∑n

i=1
xiri,j∑n

i=1
ri,j

14:

Σj =

∑n

i=1
(xi − µj)

T (xi − µj)ri,j∑n

i=1
ri,j

15: end for
16: end while
17: Store maximized LL for the initialization
18: Store sample assignments using (10)
19: end for
20: end procedure

for several random initializations and retain the model from

the iteration that resulted in the highest log likelihood.

The GMM also involves a model selection problem of

selecting the number of mixture components. We leverage

the Bayesian Information Criterion (BIC) [21] to solve this

problem. In particular, we select the number of components

which minimizes the BIC.

B. Consistency Metric

We aim to quantify how similar demand is from week to

week at a given day of week and time of day, i.e. we want

to determine the consistency of demand. Pricing schemes,

as well as targeted information and incentive campaigns,

can be constructed more effectively knowing that demand

characteristics will remain the same without changes to

policy or the system.

We propose a method to metricize the consistency of

demand based on the repeatability of our GMM approach.

Using our dataset, the procedure to determine the consistency

metric value at a day of the week and hour of the day is as

follows:

1) For the chosen day of the week and hour of the

day, select a specific date and fit a GMM using the

occupancy data at this instance.

2) Assign component labels to each block-face for all

other instances with the same day of the week and

hour of the day in the dataset using the learned model.

3) Determine the percentage of block-faces which were

assigned to the same component as they were in the

original GMM fit.

4) Repeat (1)–(3) switching the date on which the GMM

is fit, and then average over the percentages computed

at each iteration.

We explore this method and discuss the results in Section V.

IV. SPATIAL AUTOCORRELATION

We use a standard measure of spatial autocorrelation—

Moran’s I [22]—to quantify the degree of spatial homo-

geneity or heterogeneity present in the demand. Moran’s I

is defined as

I =
N∑

i

∑
j wi,j

∑
i

∑
j wij(oi − ō)(oj − ō)
∑

i(oi − ō)2
, (11)

where for our problem N denotes the number of block-faces,

oi denotes the occupancy for block-face i, ō denotes the

mean occupancy over all block-faces, and W = (wi,j)
N
i,j=1

is a matrix of spatial weights with zeros along the diagonal.

Values of I range from −1 (indicating perfect dispersion)

to 1 (indicating perfect clustering of similar values). The I

value can be used to find a z−score and then a p−value

to determine whether the null hypothesis, that the data is

randomly disbursed, can be rejected.

There are several ways the spatial weight matrix W can be

designed depending on the objective. We explore three such

methods to evaluate certain questions of interest in Section V.

In particular, we will evaluate each method by determining

whether the p-values are significant using a two-sided p-value

with a significance measure of .01. We report the percentage

of instances in our data set—each instance given by the

occupancy at a date and time—that are significant.

A. Assessing Local Homogeneity

In Section II we discussed and demonstrated that parking

demand displays spatial heterogeneity. A logical follow up

question to this observation is whether there is at least local

spatial homogeneity. If this were the case, it would imply

that it could be possible to find groups of block-faces where

there is spatial homogeneity. To evaluate this objective we

create the weight matrix by setting values of wij to 1 if

block-face j is one of the k nearest neighbors to block-face

i and 0 if it is not. We experiment using a range of values

for k in Section V.

B. Assessing Homogeneity in Current Parking Zones

We are also interested in the spatial autocorrelation within

the currently designated paid parking zones by the city

of Seattle. This will help us appraise current policies and

provide a means to make comparisons with our method

of selecting paid parking zones. To measure the spatial

autocorrelation within the current zones we create the weight

matrix by setting values of wij to 1 if block-faces i and j

are in the same parking zone and 0 if they are not.





90.0%. Furthermore, on a given day of the week, even when

including the less consistent first hour of the day, the average

consistency value is still very high ranging from 81.8%–

86.9%.

We also investigate how the spatial centers of the mixture

components change from week to week. We do this for a

day of the week and hour of the day by using the k-means

clustering algorithm [20] on the centers of components that

were found at each date with the same corresponding day of

the week and hour of the day. Fig. 4c shows an example

of clustering the centers from 29 GMM fits on different

Wednesdays at 10AM. By finding the centroids of each of the

k-means clusters and calculating the average distance from

each centroid to the points in that respective cluster, we can

describe this change in terms of distance. In Fig. 4c, we find

the average distance of the points to their respective centroids

to be just 29m. The corresponding value at all other days of

week and hours of the day has mean of 69.3m. Thus we can

see the spatial centers are reliable in our model across time

to within just a few street blocks.

C. Spatio-Temporal Insights

A key insight we gain from the GMM approach is learning

more about the time periods in which spatial demand is

similar. We find that Monday–Friday from 8AM–4PM nearly

identical models are learned. Likewise, for Monday–Friday

from 4PM–8PM very similar models are learned, which are

different from those learned Monday–Friday from 8AM–

4PM. Contrarily, models we learn for Saturday are quite

unique and need to be considered on their own3.

The preceding observations indicate that, based off of our

model, it would make the most sense to have two weekday

pricing periods—i.e. 8AM–4PM and 4PM–8PM—for the

zones we commonly find at these respective time periods,

and a unique Saturday pricing scheme. These results are

compelling because they are quite different than the policies

in place now. Currently, the pricing periods in Belltown

are from 8AM–11AM and 11AM–8PM with no individual

consideration given to Saturdays.

VI. DISCUSSION & FUTURE WORK

We provide an in depth analysis of the spatio-temporal

characteristics of parking demand using real data, as well

as an interpretable way to find zones where there is spatial

homogeneity using a GMM. The work has the potential to

allow for more informed decision-making in both policy

decisions and in designing targeted information and incentive

schemes. We establish that parking demand is consistent,

which is to say that without changes to management or

infrastructure, learned models will hold up over time. While

we focus on Seattle, our methods leverage a now common

data source of paid parking transactions from cities, making

3We make an animation available showing the model
learned at each day of the week and hour of the day at
github.com/fiezt/spatial-data-analysis/blob/master

/animation/mixture.mp4.

the models and analysis we use flexible enough to be applied

in many other communities.

We seek to use this work to identify zones of similar

demand in support of designing targeted information and

incentive schemes. Towards this end, we are investigating a

multi-arm bandit framework to learn user responses while

matching information and incentives in GMM identified

zones. We plan to implement developed strategies in a living

lab setting in Seattle neighborhoods with the aid of SDOT.
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